

Validation of MLS upper tropospheric carbon monoxide

Nathaniel Livesey + MLS Team

Jet Propulsion Laboratory, California Institute of Technology

TES, DACOM, ALIAS and ARGUS Teams

Aura Science and Validation Team Meeting

I I–I 5 September 2006

Boulder CO

Introduction, v2.1 vs. v1.51 MLS UT CO

- □ The version 2.1 CO shows significant improvement over the earlier v1.5 data
- □ VI.5 CO had significant spikes, usually associated with potential cloud contamination

- ☐ While the recommended filtering removed much of these, a residual level of 'fuzz' remained, particularly at 215 Pa (the lowest recommended level)
- ☐ V2.1 handles continuum signals, such as cloud signatures, in a different manner
- ☐ This has significantly reduced both the cloud spikes and the residual 'fuzz'
- ☐ In turn, this has reduced the high bias seen in v1.5 at 215 hPa

Approach to in-situ comparisons

- ☐ The MLS data give a piecewise-linear representation of the atmospheric fields
 - \Rightarrow Profiles \sim 165 km apart around the orbit on a 6/decade pressure grid
 - \Rightarrow Vertical resolution of information is \sim 4 km with 30–50 ppbv precision on individual profiles
- ☐ To get an MLS estimate for an in-situ location, simply interpolate MLS data
 - \Rightarrow linearly in $-\log$ pressure
 - ⇒ linearly in horizontal distance along the orbit (doing it in latitude is good enough in most cases)
- ☐ Computing the profile MLS should report given other, higher resolution, observations is more complex
 - ⇒ First a least squares fit of the correlative data to the MLS grid is needed
 - Depending on the circumstances, the averaging kernel can also be applied
- ☐ For this talk, I'll be concentrating on the first set of comparisons

MLS and DACOM curtain plot from INTEX-B

- Plot compares MLS and DACOM CO for 7th May 2006INTEX-B flight
- ☐ MLS curtain shown in contour plot
- Overlaid colored dots are DACOM data
- MLS and DACOM in broad agreement on vertical structure

- ☐ However, MLS v2.1 clearly has a high bias at the low altitudes covered here
- ☐ Recall that the 316 hPa data were not recommended for scientific use in v1.51
- ☐ INTEX-B data will be helpful in assessing the utility of these data in v2.2

Same comparison as a timeseries

- ☐ Here we show DACOM data and interpolated MLS together
- ☐ While the high bias is evident there is some agreement on morphology (mainly reflecting vertical gradients and altitude changes)

Same comparison for v1.51

- \Box This is the same comparison for the older version 1.5 data (different y-scale)
- ☐ The high bias at lower altitudes is more pronounced

MLS and ALIAS for CR-AVE (curtain)

- ☐ This curtain shows MLS and WB-57 ALIAS for CR-AVE on 7 February 2006
- The MLS profiles were all flagged as having been affected by clouds
- ☐ This may account for the significant disagreement at the start of the flight

MLS and ALIAS for CR-AVE (time series)

- ☐ Improving retrievals in clouds is a goal for future MLS versions
- Data from flights such as these will help here

VI.5 MLS and ARGUS for CR-AVE

MLS v01-51 data for January 9, 2006 (2006d009) with ARGUS overplotted.

- ☐ This plot shows WB-57 ARGUS data for CR-AVE on 9 January 2006
- ☐ MLS V2.I not available for this day, so this is v1.5

VI.5 MLS and ARGUS for CR-AVE

 \Box The level of agreement is very encouraging, particularly for v1.5

Some preliminary TES comparisons

- ☐ Plot compares MLS (red) and TES (blue) column CO from 215–100 hPa
- ☐ MLS seems to be biased high compared to TES
- MLS simulations show a similar but smaller bias for this column quantity

Summary and plans for the CO validation paper

- ☐ While v2.1 CO are better than v1.5 some high bias remains at lower altitudes
- ☐ The MLS CO product is reliable (bias aside) for 215 hPa and lesser pressures
- ☐ The quality of the 316 hPa data needs further investigation
- ☐ Version 2.2 are likely to be very similar to v2.1
- Additional issues to be covered in the validation paper include:
- ☐ Full quantification of the various sources of systematic error
- More comparisons with satellite datasets
 - ⇒ TES (as shown), AIRS, MOPITT, ACE/FTS(?), ODIN/SMR(?)
 - ⇒ Will in most cases just compare partial columns
 - ⇒ However, we still need to consider averaging kernel and precision issues
- ☐ Distillation of in-situ comparisons shown above into summary statistics
- ☐ Summary and prioritization of issues to be resolved in later MLS versions